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A\l
ABSTRACT
’
P
»
\
W.pl convergence results arc  obtained for stochastic  recursive i
approximation algorithms under very gencral conditions The gain .
L ]
sequence (a )} can go to zero very slowly and state-dependent noisc, :
W
discontinuous dynamical equations and the projected or constrained X\
algorithm arc all treated. The basic technique is the tncory of large 4
deviations  Prior results obtained via this theory arc cxtended in many i
’
directions.  Let x = b(x) denote the ‘mean’ equation for the algorithm. lct ¥
8 > 0 be given. and let G(8) be a neighborhood of a stable point 8 of ‘
that ODE. Then, asymptotic upper bounds to aylog P(X € G(8), n 3 N| b,
. IX~8l ¢ ) arc obtained. These are often more informative than the usual .
classical rate of convergence results (which use a ‘local linearization’) and, K
'
furthermore. are obtained for the constrained and non-smooth cases, for N
-
which there are no ‘rate of convergence’ results. p
/ ‘.
»
' ' ' &
:‘
\ ]
hY
\
i
K¢y Words: Stochastic approximation, large deviations, recursive algorithms, .
~errors for tracking systems ,
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. INTRODUCTION

We obtain w.p.l convergence results as well as useful (non-classical)
estimates of ‘rate of convergence' for fairly general stochastic approximation
(SA) processes of the form (1 1), via the theory of large deviations (RT =

“uclidean r-spacce)

(rn Xpog=X, +ab (X t) X €R’, 0O<a -0 Ia =<=.

n

We alse treat the projection algorithm (1.2). where n, denotes the nearest

point of a compact convex sct G.

(1.2) Xpoyp = Ug(X, +a b (X .8 ))

n

Such algorithms have been the subject of considerable attention 1] - [4], undecr
a great variety of conditions. They appear in various guises in many places
in control and communication theory.

In (1.1), the (§ } is a random process, which might be state dependent
itsclf and which takes values in a compact metric space M. The b, might
simply be a function of X , { . More generally, we allow (b} to be a
sequence of vector valued (RF) mutually independent, but not necessarily
stationary random fields parametrized by Xn. {, In this case bn 15

characterized by the distribution function (which will depend on n in the

non-stationary case)

(13)  P(b, €B|X,tb, .i€n)=Pb €B|X.t)

-1’

We suppose that |b| ¢ K < « for some constant K. There are many

applications where the random field notation is useful since it is awkward or

- : -'.‘: -.‘ v.. .\, "I"C
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difficult to express explicitly all the random variables which might be

t" involved (e.g. the X , §{ might determine other random variables which are
E used, in turn, to calculate Xn+1 from X,). For example, consider an adaptive
:» routing problem, where X denotes the routing parameter and §_ the (vector)
' buffer occupancies at time n. Then b, might be a random variable which -
:5 depends on ‘arrivals’, ‘completed services’, ‘acceptances of arrivals’, etc. at time
') n, and each of these might be related to X , § only statistically — but the
" exact relation is either too complicated to write (perhaps involving a sum of

indicator functions of various possible events) or not necessary to write.
’

If b, is simply a function of X , &, (b(X_ ), then we call it a

.: deterministic random field. Even in this case, the £, might be state dependent,
~ correlated, or b(-) might bc discontinuous. If {b } is a deterministic random
field, we write it simply as b(X.8,). Of course, since (¢,) is a random )
b sequence, {b(X .§ )} is not deterministic, in the usual sense.
o,
:‘. Perhaps the weak convergence based methods [3], [5], [6] are the most )
\ powerful general methods for dealing with the asymptotic properties of (1.1)
: or (1.2). The conditions for the validity of such methods are often readily
: verifiable. One common approach is to derive an ODE (ordinary differential

equation) for the *‘mean’ dynamics % = B(x) = Eb(x,t{) (where this is well
F defined) and to show that the asymptotic path of {X,) is arbitrarily close to
‘ that of the asymptotic solutions to x = S(x) in the sense of the weak
X convergence theory. Typically, under some stability property of the ODE, this
: method locates the points (or point) near which {X,) spends ‘nearly all of its
E time'. Nevertheless, there is still considerable interest in actual w.p.l.
i,

convergence. A powerful method would use a weak convergence approach to

¥
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-1.3-
find the ‘asymptotic’ points or sets, and then use a ‘local' method to show
w.p.l convergence of {X ) to an appropriate stable point of the ODE, under

the usual condition that some compact set in its domain of attraction is

entcred infinitely often (which would itself often be shown by a weak
convergence based method).

Among methods that can be used to prove w.p.l convergence, those based
on the theory of large deviations have a number of advantages. They can
handlec a more general (and much more ‘slowly converging’) gain sequence {a,}
then the classical methods. (They can have difficulty with problems where
the qth moments of the {_ or b (x,{ ) grow too fast as q = = (say, faster than
those for b = Gaussian), but this rarely seems to be a serious problem in
applications.) Due to recent advances in the theory of large deviations, we can
now also treat problems with state dependent noise and discontinuous
dynamics as well as constrained problems. These facts imply the availability
of a rather powerful technique for getting w.p.l. convergence. The state
dependent noise is more general than allowed in [3], [7]. The mathematical
development here seems to more complicated than the powerful ‘martingale’
based methods of ([4], [8). However, we can handle more slowly (and
erratically) converging gains, the constrained case, a different class of state
dependent noise cases, the random field model, and get a very informative ]
estimate of the rate of convergence even when the classical ‘local’ smoothness
conditions are violated. This latter point is particularly important. \

Typically, the large deviations estimates involve both an upper and a
lower bound for a (suitably normalized) probability of a ‘rare’ event (say the

event that the stochastic approximation (asvmptotically) escapes from a small

d
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-1.4-
neighborhood of a stable point of X = E(x)). To get the w.p.l convergence
here, only an upper bound is needed, and this allows a result under weaker
conditions than would be required if both bounds were desired. The upper
bound serves as a useful indicator of the rate of convergence, perhaps even
more useful than that obtained by the classical methods. It is often obtainable
even for non-stationary problems, in contrast to the classical ‘rate’ results.

The ‘rate’ calculated by the classical methods is just the asymptotic
variance of (X, - 6)/an%, where 8 is the limit point. Its derivation requires
a certain ‘regularity’ in the way a_ = 0, and a local expansion of the dynamics
about 6. Assun{ing appropriate smoothness (usually twice differentiability of
b(x,t) at x = 6, which is not needed by the large deviations method) of b for
x near 6, the classical rate depends only on the gradient of Eb(x,f) for x = 8
and on the statistics of {b(8,§)). In many applications, one is more
interested in an (suitably normalized) estimate of the probability that the path
{X,, ®>n » N} will escape from some given neighborhood of 8 for large N.
This would involve the full stabilizing effect of the dynamics and
‘destabilizing’® effect of the noise in that interval, and such a useful estimate
is obtainable from our results. Also, the likely escape routes are also of
interest, and are obtainable as the minimizers in (1.4) below.

Our rate estimate takes the following form. Let D denote a compact set
in the domain of attraction of a stable point 8 of the ODE and with 8 € D°,
the interior of D. Let & > 0 be given. Let Ap(T) denote the set of
continuous functions ¢(-) with |¢0) — 6] € 6 and ¢(t) € D for some t < T.
We will exhibit a function i(@&’,t) » 0 which is zero iff ¢ = b(¢) and a

function S-(T,¢):
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— T— .
S(T.¢) = I L (¢(s),¥(s),s)ds (for ¢ absolutely continuous)
0
= ® (otherwise)
such that
1.4 lim a_log P(X_g D, > n|IX -8 €8) ¢ — inf S(T, 0.
(1.4) lim a, log (X € some m 3 n||X —8 € 8) &ADD(T)( $) <
T>0

The right hand side of (1.4) can yield estimates that are very useful for a
‘rate’ of convergence, and for the dependence of this rate on the behavior of
the algorithm in the set of interest D, as well as for the comparison of
algorithms.

In (9], [10], [11], sharp upper and lower bounds were obtained for SA
algorithms by the methods of large deviations theory, and a great deal of
useful information was presented concerning the bounds and the structure of
the H and L-functionals. These references required a, = 0 in special ways,
the noise was ‘exogenous’, and the dynamical term b was a smooth function of
x. The methods were unable to handle the constrained problems. Strictly
speaking, the results in these references were not w.p.l convergence results.
They dealt with the sequences of sequences {X:f m 3 0), n=12 .., defined

by Xm+1 = X7, + b(xn

m n+m

), X2 = x. Although the analysis of such

n+m 0

processes is basic to the convergence result, we deal here with the actual
process itself. Also, since we are concerned with upper (large deviations)
bounds only, we use 1im to define the various functionals, rather than lim as
illustrated in the sequel. This allows a result under weaker conditions on

the (a . }. b,. as will be seen below.
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The basic assumptions are stated in Section 2, and examples given to
illustrate some of them. The properties of the ‘upper bound' which we usc
instead of thec usual log of the exponential moment (the H-functional) are
discussed. Somce of the conditions ((A2.3) and (A26)) arc stated in a
fairly general form, since they allow a simple proof of the main
convergence result, Theorem 3.1, not cluttered with all the details required
for all the special cases. It also facilitates the application of futurc
results in large deviations theory to the stochastic approximaticn problem.
In the sequcl. we give considerable detail on verifiable sufficient
conditions for these assumptions. (A2.3) is a standard assumption in large
deviations theory (see also the remarks concerning it in Sections 2 and 6).
and it seems to be satisfied in all the examples of interest. Assumption
(A2.6) is of a ‘large deviations' type itself, and the bulk of the paper is
actually devoted to sufficient conditions for it in ‘non-smooth cases'
(Section 7), constrained and state-dependent noise (Section 5), smooth
dynamics and exogeneous noise cases (Section 4).

The total picture is a w.p.] convergence result with the associated ‘escape’ A

probability estimates under quite general conditions.
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2. BACKGROUND AND BASIC ASSUMPTIONS

In this <cotion. we introduce some rather gencral assumptions which will
be used to prove the main consergence theorem in Section 3. Two of the
assumpticns (1AZ 33 and (A2 64) are not casily verifiable, but are used simplh
to facihitate the proefs in Sccuon 3 We prefer to work with these
assumptions in this section, since the conditions and mecthods which guarantce
them differ from case to casc We will return to them in Sections 4 and S,
where readily verifiable sufficient conditions for them are given for a
numbcr of cases that cover a wide varicty of applications.

Until Section 5. we work only with (1.1), the unprojected casec. We say
that {{ j is ‘exogencous’ or ‘non-state dependent’ if for any n and Borel set A
€ o, i1 > n), we have P{A | § 1 € n} = PlA | 3 X.* i € n). For the
‘state-dependent’ noise case. we use the model where the pair (X . Eoy) 1S a
Markoy process. This covers a large number of important applications, and
provides for a convenient analysis. For the state-dependent case, define the

one step transition function (2.1), which we suppose to be independent of n.
(2.1 PYLA) =Pt €A X =x § _,=1)

In the state-dependent case, a so-called ‘fixed-x' process ({:} appears in the
analysis, exactly as for the weak convergence approach [5]. For each x € R,
define {t:) as the M-valued markov process whose transition function is
obtained by convolving P*({,A).

We next define the ‘large deviations’ H-functional. For the case of

exogencous noise, define Fn = o(i, i € n) and let Ey denote the expectation
n

J_\‘_'- . “ A ‘. \'\-
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k conditioned on ¥, For the state-dependent noisc case. let E‘{ Jen
. expectation given {3 = §. We first define the functionals for the casc
constant gain a_ = a > 0, and then make the alterations which are regqu.rc!
b when a, - 0. The following assumptions will be used Suftficient coni s r
! are given in the remarks following, and in Appendix |
\
A2.l. Exogeneous noise. The lim sup exists uniform{y /n « and x o o,
compac! set)*
)
: B — 1 Narn
, (2.2a) H(x,a) = Iim —log Ey exp<a by
; Nn n N N-1 ! '
N
[ State dependent noise case. The Iim sup exissy wncform’s o L€ N v -
(in any compact set)
y — 1 x ~ Ngn
(2.2b) H(x,@) = lim = log E} expia. L bivtry
Nn n Nel ! o
A2.2. There is a continuous function bl ) suchk tha: (CNOLCHCTUY M G
) uniformly in x in any compact set and in W) as nN = =
) 1 an -
] (2.3a) - Ef b(x,§) = b(x)
A n N+t N
; (state dependent noise, and uniformly in x tn anv compact se: and 1n { € M, ‘
1 an x x -
; (2.3b) - E{bi(x‘{i-N) - b(x)
[) n N+1
.
Al P . . . . .
*We say that 1im exists uniformly in w if for any & > 0 there are Ng. ng such
X that for n » ng and N 3 N the rhs of (2.2a) 1s € Hix.a) + & wp |
1
[
|}
§
(
9
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Remark  Since the B oare tounded. a condition equivalent to ¢2 2ay (with a
simitar change teo oI Thaoas toouse by in licu of Ey . where m = o(n)
n

L-m

We¢ use the following assumption on H( . ) and comment on .t below and
1

o Arpondie |

Dcetine the dual function or Legendre transform
Liv B = sup | aB - H(va))
x

Ay a1 Vs dower semucontinuows n both vaniakles (b For eackh x.

Yoo W tad oo Ha'\alrL\.'\ . a=0

The aditterentiability 1y a3 rather weak requirement  Some sufficient
conditions are gisen an the remark belom A more general approach appears
moAppendiv @ iSection 60 As discussed 1n Section 6, 1t is equivalent to the
cendition that Lo By a ¢ uff 8 = S(n. the mean value of the dynamics. and

seem- - be satisfied 1n all examples of interest

Remark un the 1se of Lo o) n (A23) The ls.c. property holds if
H. © s continuous  Although conditions guaranteeing this continuity may
varsy lrom o casc to case. 1t as often quite easy to prescribe mild sufficient
Junditinny Tor a given case For example, f b(x.8) = b(x,{), and if b(x.,¢) is
continucus an v tuniformis an {1 then H(x.a«) 1s continuous Lven if b( ,¢) is
not continuous. 1t 1s often true that the noise provides enough ‘smoothing’ so

that tor some m » 0 1not depending on x, w, N or n) the functions

Nin )
D,\' Lvar e EYN- exp \a.b‘(l.l’)v'

m 1zN e}
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are continuous in (x,a) uniformly in the other variables. Under a mild
additional condition, this continuity will give us the lLs.c. property. First, we
show it for the stationary m-dependent case, where for any j, {§, i € j}, {§, 1>
j + m} are mutually independent.

Define Dq(x,a) = E exp Zg'1<a,bi(x,{i)> and Hq(x,a) = (log Dq(x,a))/(q+m).
Suppose that Dq is continuous for each q. By the m-dependent property and

the stationarity,

kq+km
——Jog Er exp 5 Cabi(x,b)>
kq + km g F Xp L b, (x,§))

log[expled Kkm] !tl Ey

quq-l
ex {e,b.(x,8.)>
kg + km =1 fq-m P 2q b, (x.8;)

= qu + Hq(x,a).

where sq =K/(g+m)~-=0asq~* Thus H(x,a) € Hq(x,a) + Sqlod.
To show the Ls.c. property of L, proceed as follows. Let B, = B, x, = x and

write

],l;_m L(x,8) » L}_m_ |§J‘DM [<o:.,Bi> - Hq(xi,a) - 5q|°4]
= QJPM [€e,B> - Hq(x,a) - Sqld]-

Now, let q = « (so that Hq(x,a) + 5q|°4 can be replaced by H(x,a)), and then let

M = = 0 get by monotonicity that
lim L(x,8,) ? sup{<aB> ~ H(x,@)] = L(x,B),
1 [ 4

which is the ls.c. result.
It is also simple to prove the o-differentiability (A2.3b) for this

m-dependent and stationary model (even without the continuity in x). At

U W W N LS A ey Ry Ay ARG R W RIS L S [ a® o i Vel ) S N Ly ) -
” " v g% 19" '\0 )
95,9, O 9, %, %, % s ol 0l 0, G R (o. L) -,.l':‘l Sy kmmt&tm{zd
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« = 0, the gradient of Hq(x,a) equals E I b(x,§,)/(g + m), which converges to
a limit E(x) as q = «© Since the convex (in «) function H(x,a) is bounded
above by the convex functions Hq(x,a) + Sqlcd, and since H(x,0) = Hq(x,O) = 0,
the set of subdifferentials of H(x,-) at « = 0 is contained in the sct of
subdifferentials of Hq(x,-) + sql-l for every q. This latter set converges to the
point S(x) as q - =. Hence H(x,-) has t—>(x) as its unique subdifferential at « =
0, which implies that H(x,0) exists and equals B(x).

A proof similar to that above can be employed to get the ls.c. of
L(-,-) if the DN'n(-,-) are continuous for some d > 0 (not depending on N,
n, x, W) and the lim in (A2.1) is attained in the following uniform way:
Let there be 8(Ny,N,,n,n,) (which do not depend on x, w or «) which goes
to zero as N, = Ny = =, n

N, * % n, > % N0 - » and such that

170

1
H(x,a) — le;ubF;No ;10g DN,n(x,a)] £ S(No,Nl,no,nl)(lot{ + 1)

nl?n?no

This condition doesn’t seem particularly restrictive.

Remark on the calculation of the derivative H (x,0) in (A23). We
show how to calculate the value of the derivative, given that it exists.
The derivative plays a crucial role in the sequel, since it defines the ‘mean
dynamics’ for the algorithm (1.1). The following readily verified facts
about convex functions will be used to get H(x,0) in terms of the
statistics of (b (x,%.)} or (b (x,{})}.

(i) Let {f,(-)) be convex on R and satisfy f,(0) = 0. The supf(«) is
differentiable at « = 0 only if each f(-) is and the gradient f, (0) does not

depend on 1.
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1;
(11) Let each fi(-) in (i) be differentiable at « = 0 and let f(a) = limif.l(oz) ::'
exist. If £(-) is differentiable at « = 0, then f _(0) = lim f, (0). v
*
Now we wuse (i), (ii) and the limit assumptions (A2.1), (A2.2) and the c:
O
differcntiability assumption in (A2.3) to calculate Hu(x,O). By definition ¢
L&
—_— )
lim = lim sup . ‘
N== N == N3N, .
- - i
n n, m)no ‘:“
This, together with the above facts and assumptions allows us to calculate
H (x.0) as follows. Write H(x,«) in the form :
Tim = log Ey exp<a B (b(x.0) = Er b(x.&)> + - " aFp b(x.t)> .
im - X (x,8.) — (X, €. + - (X, L.
n,Nng}'N pa’ml' ! Faoi i nN+1°g}—N iR -
- L4
The result that H (x,0) = b(x) follows by noting that the derivative (at « ;
= 0) of the terms to the right of the 1/n is zero for all n, N and using 'C;
‘>
) (A2.2). In fact, what we have really shown is that (A2.1) and (A2.3) imply y
the existence of S(x) such that (2.3a) holds. An analogous calculation P
Y
works for the state-dependent noise case. ;J
v
Exgmple 1. Consider the simplest case, where bi(x,{) = bi(x). Then, under )
(2.32), by
- , ] Nin A
b(x) = lim - £ Eb(x).
nN N N+l .
.
If the b,(x) are identically distributed for each x, then b(x) = Eb(x) and i
——— .
H(x,a) = log E exp<{ab,(x)>, and lim = lim in (A2.1). If the measure induced Kt
by b,(x) on R™ is weakly continuous in x (as is rather common in applications),
»
then H(-,-) is continuous. The rate of convergence estimates for classical :
’
stochastic approximation [1]} - [3], [6] do not cover this case unless b(-) is an
"
]
.\
‘.
g
'

-
-
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appropriately smooth function of x. Thus, even in this simple case, which
covers many applications where the b, involve (e.g.) indicator functions, we can
get a rate estimate unattainable via the classical theory.

Example 2. The case of Example I, but where {b(x)} are not identically
distributed. Define Hi(x,a) = log E exp(ogbi(x)>. Then E(.) is still given by

(A2.2) and

-_— l N+in
H(x,0 = lim = £ H(x,q),
N,n N N+1

which exists and is differentiable at « = 0. The noise process hecre is
non-stationary, but we can still get our ‘rate’ estimate. The example also
illustrates that the use of 1im rather than lim in (A2.1) is of much more than
academic interest. If the measures of the b,(x) are weakly continuous in x,

unifermly in i, then b(-) is continuous.

Example 3. Remarks on the use of 1im rather than lim jn (A2.1). The
use of 1im is somewhat equivalent to taking a worst case. For example, let
b (x,8) = b(x) + §, where (ln) is a sequence of zero mean mutually independent

Gaussian random variables with covariances (L ). Since

I N I N
= log E exp<a I (b(x)+ §)> = b(x) + — I <& T ad
n N+1 J 2n N+1 3

—_— _— I

the lim in (A2.1) is just b(x) + a'Ta/2, where L is the 1im of —:En L in the
n N+1

sense of non-negative definite matrices. In many problems, the dynamics are

stable enough so that if the noise terms are multiplied by some factor (to take, say.

L tol)we still have the required ‘stability’ to get the desired w.p.1 convergence.

b \' N ' T
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Example 4. Let bi(x,t) be simply a function b(x,E) (i.e.,, a deterministic
random field), and consider the case of Markov state-dependent noise, with
one-step transition function P*(%,-). Under a uniform (in the initial condition)
recurrence condition on fixed x-process {t’r‘l) and continuity of b(x,§) in x
(uniformly in }), the following facts are proved in [24). Let C(M) denote the
continuous real valued functions on M and define an operator mapping
C(M) -~ C(M) by
(2.4) P(x,0)(f)(}) = J exp <a,b(x,¥) > (Y)P*(§,d¥).

M
The eigenvaiue Mx,a) of l3(x,a) with the maximum modulus is real, simple and
larger than unity for « # 0. Also H(x,a) = log M x,a) and H(x,«) is analytic in
« If the right side of (2.4) is continuous in x for each f(.), « &, then H(-,")
is continuous. Also b(x) = I b(x,t)u*(dt), where u*(.) is the unique invariant
measure of ()}, and lim = lim in (A2.1).

These various examples can be combined and extended. Other examples
are in Sections 5 and 6, and in [11] and [24).

i r i -Function. In the expression
(2.3), defining the mean ‘dynamics’ of (I1.1), the terms are weighted equally.
This corresponds to the case a =a We will see in Section 3 that, under a
simple ‘asymptotic continuity’ condition on ({a }, S(-) also yields the
appropriate ‘mean’ dynamics when a_ = 0. In order to get any sort of useful

convergence for (X ), the ODE
(2.5) X = b(x)

must have at least onc¢ stable point. We assume:

PR XA,
3

FET
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A2.4. The ODE (2.5) has a unique solution for each initial condition and
there is a point ® which is asymptotically (not necessarily globally) stavle in the

sense of Liapunov, with domain of attraction A

A2.4 implies that for any compact GCAand 6> 0 there is T < ®such that all

)
é solutions originating in G are in Ng(8), a 8-neighborhood of 8, fort > T.
D
' Recall the definition of the dual of H(-,-):
) L(x,B) = sup[<e,B> — H(x,)}.
[+ 4
h
The following lemma collects several facts concerning L(-,-) which will be
X .
needed later.

. Lemma 2.1. Under (A2.3),

(i) L(-,-)3»0.
b (i) L(x,B) = 0 iff B = b(x).

(i) L(x,B) = «if|B > K.

Proof. (i) This follows from H(x,0) = 0.
! (ii) The convexity in « and the o-differentiability of H(x,a) at « = 0
p imply that b(x) is the only vector in RF satisfying

H(x,a) — <a,b(x)> » 0.

The result follows from this.
(iii) Since |b,(-,-)| is bounded by K, H(x,@) € K|of. If |B] > K, then by

taking « = nB we see .

L(x,8) > njB> -niBK == O
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Dcfine t, = Ly 1a and m(t) = max{(n: t_€t}. We will requirc the

following ‘asymptotic continuity’ assumption on the sequence {a ).

a
A25. L=}
m

m
t-tl™0 @

n,mdﬂ

For every N we define K\(s) = am(tNﬂ)/aN. If follows from A25 that

given 8 > 0 there is ¢(8) > 0 and N(8) < « such that N 3 N(8) and

= Iim Ky(t). Then A25

[t-s| € c(8) imply |Ky(t) — Ky(s)l € & Define K(t)

implies K(t) is continuous and satisfies 0 < K(t) < ® for 0 €t < =,

Let a = 1/n. Then m(tn + s)/n{(exp s) =1 as n =~ « and

Examples.

KN(s) - exp -s. Let a = l/n7, ¥y € (0,1). Then m(tn+s)/(n+sn7) - 1

as n - « and KN(s) -1 If a = ¢/log n, then m(tn+s)/(n+s) ~ 1 and KN(s) - 1.

In general, if a_ is nonincreasing, then K(s) € 1.

The H -Fun for {a,}. We next define the

analog of the H(x,a) for our case of non-constant {a }. Owing to the fact that

a, is not constant, the H and L functionals will depend on time, if K(t) is not

equal to unity. Define the ‘centered’ H-functional
H(x,a) = H(x,&) = <ab(x)>

and set

(2.7) H(x,®5) = KX s)H(x,K(s)a) + <ab(x)>.

The definition (2.7) and (A2.2), (A2.3) imply the differentiability of F{(x,-,s) at
a = 0 with b(x) = Hg(x,0,8) (it will not actually depend on s). Let L(x,8s)

denote the dual of fl(x,a,s):

oy, l."-\-

.'u'o. q,u. LY S

o "'-.-' ",»
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L(x,85) = Sgp[<a,3> - H(x,&s)].
Using (2.7), we see that

L(x,855) = sup[<xB> = K (H(x K (s)a) = <ob(x) ]
K1)y (x,K MK (s)B = b(x))

K 1(s)L(x,B) ,

Lo(x,8) = sup [<aB> ~ Hy(x,)] = L(x,8 + b(x)).

(A2.3) and Lemma 2.1 then imply that L has the following properties:
G) L(-,-,-)20.
(i) L(x,Bs) = 0 iff B = b(x).
(iii) L(x,B,s) is jointly Ls.c. in (x,B).

(iv) L(x,B,s) = = if |8 > K.

We now define a large deviation action functional for (1.1). Let C[0,T]
denote the space of Rf-valued continuous functions on [0,T]. Then for ¢ €

C[0,T}, define the functional

—— T — .
(2.8) 510 = [ Tos00s
0

if ¢ is absolutely continuous and ¢0) = x, and set -S-x(T,d>) = @ gtherwise.
In the sequel, all functionals of the type (2.8) are assumed to take the

value += if ¢(-) is not absolutely continuous or $0) # x.

) . - -
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For purposes of the next assumption and the proof in Section 3, it is
convenient to define (for each N and x) the form (Xf"‘, n 3 N) of (1.1), which

starts at time N with initial condition at time N satisfying Xg"‘ = x and then

29 xXNx=xNxia b (XNxg), naN

n-

In the exogenous case, the noise in (2.9) is the same as in (1.1), while in the
state dependent case we will specify in €M Define the continuous

parameter interpolations of the processes (1.1) and (2.9):

(2.10) X(t) = [(t—tn)XnH + (tn+]-t)xn]/an, €[t .t +a ]=[t.t ]

211 X% = [~ =, )XV X+ (4, )XY 2 e [ttt

n+1 n+1 IND

We will use (A2.6) below, given in terms of the processes XNX() The
assumption is certainly not readily verifiable, but it allows a general proof of
the w.p.l convergence and the upper bound to the convergence rate given in
Section 3. It is convenient to use the condition as it is stated, since it is the
key condition in Theorem 3.1, and in different cases, different sets of
conditions would have to replace it. In Sections 4 and 5 we devote
considerable attention to a series of verifiable conditions for (A2.6), and cover
a large number of interesting cases. Let C [0,T] denote the set of continuous
R'-valued functions on [0,T] with initial value x, and with the sup norm

topology.
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A26. Lets>0,86>0, T>0 and compact F C A° (the interior of A) be given.

Then there is N, < @ such that for any x € F, any set A € Cx[O,T] satisfying

inf¢€; §x(T,¢>) 3s. and any N 3 Ny, we have

2.13a) ay log P(XN*(-) €A|F) € —s+ 8

(2.13b)  aglog P(XN*()€A|g =8 € —s+ 8

for almost all w and all ¢ € M in the cases of exogenous noise and state

dependent noise, respectively,

Remark. The uniformity of the estimates with respect to w (respectively
§) imply that (2.13a) (resp. (2.13b)) continues to hold if we replace N by any

stopping time M 3 N,
Finally, we state the slowest rate at which we can allow a =0

A27. For every & > 0, chxp - 6/a, < = Zan = ™
For example, let a, = c_/log n, and ¢ - 0 with Zan = ® Then (A2.7)

holds.

T L Y Y A LR R SR IN S PRSI N SRy _~'._~'\-:.';:\-'_.,f._-'.‘-‘._"._-'..~1_-’._-;._-'...-".'-;._-'. e
. . ) () X A £ o X ol o X g ad Jadalrl M

NOEF AW



‘l.-

LR
-‘I -

) \J"

ata

./-";-"\"\ T R R e A T R N N A A R S S LT Rl W x'-' .'\' WA

\-

I YRR Y) Are Sl bod 0.8 Vg 8.0 4.8 @ Cah Ao o ol AR W 8 0ah va@ L8 Nal S2m N0 %ah P2 0.8 dap 4.0 $.4°6,

-3.1-
3. THE BASIC CONVERGENCE THEOREM
The following lemma gives several important properties of our action

functional.

Lemma 3.1. Assume (A2.1) to (A2.3). Then for any T > O
(i) ST is Ls.c. in ¢ € C[0,T},

(i1) For any compact set F C R, and any = > s 3 0, the set
G= U (¢ SAT.0) €5
o ( JAT.9) }

is compact.
(iil) S(T,8) = 0iff ¢ = b(#) (as) in [0,T], and 0) =
(iv) For each ¢ > 0 and T < = there is a & > 0 such that |B — b(x)| 2 €

implies l-.(x,B,s) 3 6 on [0,T)

Proof. (i) See [14; Theorem 3, Section 9.1.4)

(ii) Recall that for |8 > K implies L(x,8s) = = for all s » 0. It
follows that ¢ € G implies that ¢ is Lipschitz continuous with constant ¢
K. Ascoli's theorem then implies that G is precompact, and (it) now

follows from (i).

(iii) S(T,0) = 0 iff L(s).&s).s) = 0 as. in [0,T]. Since L(x,B,s) = 0 iff

B = b(x), S (T,$) = 0iff ¢ = b(¢) as.

(iv) It is enough to work with L(x,B). Let x - x, B ~ B such that |B_ -
S(xn)l 3 ¢ >0and L(x,,B) =~ 0. By the ls.c. properties of L, lim L(x_.B)) ?

L(x,B) which equals zero only if 8 = l-)(x). 0

v J' -., - . f , _/. -'../. J‘J' - *‘_. S S ) & ",."h‘J.'.'»- P , o~
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We now present the convergence theorem:

Theorem 3.1. Assume (A2.3) (o (A27). and tha: gioen some compo
neighborhood G(8) of 8 such that G(8) C A® there 1s (a5 g irandem wejwcr In
such that Xni € G(9).

Then X = 8 wp.l.

Assume in addition that given € > 0 there 1y Nce

a/ay €1+ e forall i N3N . Then

(3.1 limaylog P(X, € G(8). some n 3 N N~ 6 < &

f
[
w

€ - ¢|¢(;;’1f o < s So(o)(tﬁ) =
O()EG(D), some 1<

Remarks If not all paths visit some neighborhood of €& niimiec. .
often (i.0.) then we will have X, = @ wpl with respect to thise parh
which do. It is expected that the recurrence condition would be ser. o
by a weak convergence argument. Under the last assumption ! the
theorem, K(t) € | , which implies l__(x.B.t) » L(x,B) [t 15 then simple
to show (see the arguments below) that for small § > 0 the rhs «of ¢3!

is strictly negative. In particular, if a, is nonincreasing, then Kty ¢ |

Proof. For 6 > 0, let Ng(8) denote (x: 18 — x| € 6) We will first prove
that if {X,} visits G(8) infinitcly often w.p.1, then (X,) visits Ngt®) anfinitehs

often w.p.l. We can suppose that N,5(0) € G(8).

Owing to the stability assumption (A2.4), there is T, < = such that (f ¢

satisfies ¢ = S(@) and &0) = x € G(8) then &) € Ng .8 for t 3 T, Define
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4 (3.3) lim P(X,,; € Ng (8), some i < | X, € N (8)) = 0.

n

"

i We have the obvious inclusion

A

7 (X, ;i €Ng (e), for some i <= and X € Ns (8)

: C (X, € Nsl(e) for some m(JT2 + tn) <1 € m(sz + T2 + tn)
" .

:‘ and/or X’"‘”z”z*"n) £N52(9) , some 0 € j<= and
X, € st(e)}

. _ 2 2 c

5 = e LaEmiT ) ) Emiryee)” N (X, € Ng (8)) .

b7 It follows that

>

’ .

:: P(X, . € Nsl(e) , some 1< ® |)(n € st(e))

. 7

: (3.4) ® c

B ¢ ZOP(Em(JT s (Em(lr sy NIX, €Ng (O]

4 =

“: Note that for any fixed j inclusion in the conditioning set implies
:; )(m(JT2 ) € Nsl(e) . Thus (3.3) follows from (3.4), (A2.6), and (A2.7).
o We now consider (3.1). Let T > 0 be fixed. Define the set of paths
-::

- A(T) = (¢:1¢0)- 8 € 6, &t) € G(8) for some t € T, and

@ 1) -8 » 8/2 for T ¢t ¢T).

v .

. We claim that for large enough T,

]

(3.5) inf 50(0)(T ¢) » S

) PEA(T)

L4

o

X4

]

By

L)
':

N

N
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First note that the same proof as that of (3.2) implies there is ¢g > 0 and

T, < ® such that if we define Ay = (¢:¢0) € G(8), &T,) € Nsn(e)) , then
T

3 .
in_f_ I L(#(s), ¢(s))ds 3 c,.
e, ‘o

Let i = the integer part of (T-?)/Ts. Then for the paths in A(T) that do

not escape from G(8), we have
§¢(0)(T7¢) ? ics ’

which implies (3.5) (when T is large).

Now define the stopping times TN by TN = N, ™, =
inf(n 3 m(t¥ + T: X, € Ng(®) or X_ € G(8)) and the events
EN = (X y €G®) or ty - t N 3 T) . We use the following estimate,

i+1 i+1 i
which is derived in the same way as (3.4),

P(X, £ G(8), some n 3 N|Xy € Ng(8))

¢ I PEN|NEN N (Xy €Ny .
=0 1<

Fix h; > 0. By (A26) and (3.5), an upper bound to the rh.s. of (3.6) is

given by

I exp -G - hya
i=N

= (exp = (5° = hy)/ay) T exp(-(S - h)/a+ (S° = hy)/ay]
i=N

when N is large. Thus (3.1) follows if we prove that given h, > 0 there

is h; >0, N < ® and M < = so that for N 3 N,
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(3.7) T exp(~(S" = hp)/a + (5 = hp/ay] € M.
i=N

To prove (37), take € = (h,/85") A%, and h = €S/2.  Pick N large
enough so that a/ay €1 + ¢ for 1 3 N 3 N . Then for i such that
a,/ay 3 1 — € we have
(=S + h, + (S = h)asayla,
¢ [h, + €S" = hy(1 = €))/a, € [~h,/4)/a, .

On the other hand, if a/ay < 1 - ¢, we obtain the following bound for

the exponent:

[h, - ¢S'V/a, = [—€S'/2)/a, .

Hence (3.7) follows from (A2.7). O
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4. A PROOF OF (A2.6) FOR EXOGENEOUS NOISE AND SMOOTH
DYNAMICS
In this section, we prove (A2.6) under more readily verifiable conditions.
and in the cxogencous noise case. In Section 5, we state and discuss other scts

of conditions under which a similar proof yiclds (A2.6).

First, we show that the H-functionals as defined by (2.7) arc the
appropriate onecs for the case a_ ~ 0 in a genecral sctting. Then, in

Theorem 4.2, a basic sufficient condition for (A2.6) will be obtained.

Thecorem 4.1, Assume  (A2.1), (A2.2) and (A25). Then  for  the
exogencous noise case and uniformly in w (w.p.l)) and in t in any bhounded

interval,

(4.1a)

] — [m(tN+!+A)

im —lim a og Ef ex
a N ANTOB R EXP

!A~o r ) <a,aibl(x,(i))/aN] e ;{(x,a.t).

m
tN-H

For the state dependent noise case, and uniformly in & and n t in any hounded
interval

m(zN+t+A) _
(4.1b) i Iim aylog E’i cxp[ r (ogalb|(x.{:‘_N)>/aN] € H(x,t).

m(tN+t)

Assume in addition (A2.3). Then for any 0 € Tl < T2 < =, Hu(x.O.t)
equals B(X) where B(x) also satis fies

- ! m{ty+Ty)
(4.2) b(x) = ——— lim E; I ab(xt)
T N=+= N mity+T)) "

2 1

with an analogous statement holding for the state dependent noise case.

Proof. We only prove (4.1a). The proof of (4.1b) is similar. Also, (4.2) is

A A A T e P e S A e
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obvious by (A25) Fix & > 0 and define l_wf"(x) = L;\_b‘t\‘t;' Rewr e the

left side of (4.1a) as

] ,(tN-an) —
lim —1limaylog Ey ex I {ea (b(x.{) - b xy) a ]
A Ja h g F p m( h‘” 1 | i 1 hY
(4.3) 1 m(t Ht+4) .
+lim = limay Z <mab“(xwa~
8 A N m(tN+t) v g

Under (A2.2) and (A2.5), the last term in (4.3) equals <a,5(x)>. Thus. we need
only work with the first term in (4.3). It will be proved that the first term 1s

boundcd above by
(4.9) K HOH (x K()a)

which will vyield the theorem in view of the decfinition Hix.at) =
K NOH(x K(t)a) + <ab(x)).

By differentiating the part of the first term of (4.3) to the right of the ay
term with respect to a,, we see that it is convex in {a,}, non-negative and zero
if a =0 Because of this, the definitions of the K\(-) (below (A25)) imply
that there are cn(d) tending to zero as N - « and then A4 - 0 such that an
upper bound to the first term of (4.3) is obtained by replacing the a /ay there
by an upper bound (K(t) + c\(8)), and by replacing the left hand ay by an
upper bound AK (1) + cy(8))/[m(ty+t+8) — m(ty+1)).

We next make use of the following fact. Given a convex function H(«)
such that H(0) = 0 and H(«) » 0, the inequality H(sa') ¢ sH(«') is valid for
all 0 ¢ s ¢ 1, and for all a'  Picking s = s,/s, and a' = s,a we obtain for

all 0 « s, €5, and for all « that

.'/_/f.‘-f.- .«._ ..f ,'rf.f'rrrrr-‘.---,_-__.,‘-,....-_..._.,..
S NS "- e . » 6. ot N ‘\\ o ,f...'\'s’.. «.', A R
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."\ L%
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" (4.5) 1 H(sla) €5, H(sza).
R
i We will take s; = Ky(t) + c(8) and s, = K(t) + cp(8) + A&
.t

Since KN(t) ¢ K(t) + & for large N, an upper bound to the first term in

(4.3) 1s also obtained by replacing the a,/ay by (K(t) + c\(8) + 8)and theay by

A
»
-
[
b AK (1) + cy(8)) (K (1) + c(8)
(K(t) +cy(a) + 8) (m(ty + t + 4) = m(ty+ 1))
I
: Doing the substitution, using the definitions of b(x) and H(x,«) and taking
; limits yields the desired bound (4.4) for the first term in (4.3) 0
P Remark. We have used the fact that A2.5 implies K,'ql(t) is bounded

from above uniformly in N for N large.

In Theorem 4.2, we prove (A2.6) under condition (A4.1) below,

Remark. For a continuous parameter problem in [12], Freidlin uses a

L]
)
’
¥
¥
]

o

continuous parameter analog of (A4.1), with Lipschitz continuity of b(-,¢) and
continuity and «-differentiability of H(-,-) to get the large deviations
incqualities. He uses lim rather than 1im to define his H-functional. An
examination of the proof in [12] shows that (uniform) continuity of b(-,%) is
enough. Also, for our ‘upper bounding’ needs the € in the lim of (A2.1) is

cnough. It's not actually necessary that the lim exists.

Ad.l. (%) is exogeneous. The random vector field b (x,8) is deterministic -
and so we write it as b(x,}), where b(-,t) is continuous, uniformly in ¥ and

Ib(x,0) ¢ K < =

SRS AR
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Theorem 5.1 extends Theorem 4.2 to the ‘non-deterministic’ random field

v

i case.

‘l

v . Theorem 4.2. (A2.6) holds under (A2.1), (A2.3), (A2.5) and (A4.1).

N

; Remark. The proof is along the lines of Freidlin, Theorem 2.1 of [12],
N _—

3 with appropriate modifications for our use of lim, a - 0 and the
h uniformity in x required in (A26). We will use the results in Freidlin’s
; proof whenever possible to simplify our argument.

Proof. (i) Since b(x,}) is continuous in x, the lim defining H and H and

3 b arc taken on uniformly in x in any compact set, and the lim in (4.1a) also
. holds uniformly in x (and also in w, w.p.l). This uniformity implies the
following. Let T < = Let F C R be compact and let & > 0. Let o) and
™ ¥(-) be functions defined on [0,T] that are constant on intervals of the form
4
N

™ [i4,ia+4), and let ¢(-) be F-valued. (Assume w.lo.g. that T is an integral
{ multiple of &) Then, uniformly in () and w,

_ m(ty,+T)

: Tim aylog E;Nexp[ 7 cate, - t,b00t, - tN),ii)>/aN]
[, (4.6) N

» T—
k> ¢ J' H((t), (), t)dt.
0

: (ii) For fixed x and the above defined Y(-), define the process {X"‘f’-”},
A
. analogously to the definition of (X*N} by Xg"N = x and
o

; (4.7) XY N o XPN 4 bt = ty), &)

2

L
i and its piecewise linear version (analogous to the definition of X*N(.))

-

5\

‘
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(4.8) XUN@) = [(t = (1, - )XEN 4 (1, - ty) - OXNy/a

for teft —ty, S #9)

The process Xd"N(-) plays an important intermediary role in getting the
desired large deviations result, since it is relatively easy to get one for
X¥N(.), and then to extend it by suitable choices of ¥(-).

Define X,'g'A = (X‘p'N(iA), i=1,., T/a). We next prove a large deviations
upper bound for the vector Xg'A, which will be uniform in x (in any compact set
and alsoinw, w.p.1). Let F,C Rf be compact. Let o €RF i €T/Aand define of )

by (the manipulations at this point are similar to those used in [12, Lemma 3.1])
’YA
a(s)=‘kozi,s€[kA—A,kA). i
i=
Then by (4.6) (where the lim is uniform in x € F,, w(w.p.1.) and ¥(-))

brang T s
(4.9) lle aylog E}—chp[ ?A <ocl,X¢"N(xA)>/aN] .

_— (tpy+T}
liNm aylog E}-chp [mg <ox(ti—tN),ai(b(¢:(ti—tN),§i) + x)>/aN]

~

T—
I RO A0,0d8 + x, & a

0 1

T8 i {w(m),‘TfA o, iA] RN
0 j=i+1 1

WY (ay, ... agp)

For (B, i ¢ T/A) = Be (R')T/A. define l"-w(Bl, . BT/A) to be the Legendre

transform of h"""(al, “’r/A)'

MRSV INIRAN
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Remark, The last equality in (4.9) is not really correct, since ﬁ(d),on,t)
may differ from ]Tl(d),a.,iA) over the interval [iAiA + 4] However, since the
Legendre transform of ﬁ(w,cgs) is K-1s)L($,B), neglecting this variation
amounts to no more than multiplying !"'d’(E) by a scale factor which tends to
onc as A tends to zero, uniformly in all the other variables (x,w,E). Since we
are subsequently allowed to choose A > 0 as small as desired, we can safely
ignore the time variations over the interval [iAlA + i8] as a matter of
notational convenience. We maintain this convention in later proofs as well
but will use ¥ or & rather than = or € to indicatec that we are ignoring
such a scale factor.

Define af'A(s) = {E: n"-“’(l_B) € s). Then (4.9) and a theorem of Girtner's
([16], Lemma 1.1) imply that for any 6 > 0, h > 0 there is a N, < ® such that

N 3 N, implies that (for x € F,, Y(-) as above)

(4.10) Pr (XY BP4(5)) > 8) ¢ exp = (s=h)/ay,

Here d is the Euclidean metric on (R7)T/2

In the proof of his result, Gartner used a definition of (his) H-functional
(it is the function G in (1.1) in [16]) which involved a lim rather than a 1im.
But the proof of his Lemma 1.1 is valid if lim is used or any upper (l.s.c.)
bound to the 1im is used, if that upper bound is used to compute the L-
functional. Also, according to the proof in [16], the inequality (4.10) is valid
uniformly in all variables in which the inequality (4.1a) is attained uniformly
as N - = A -0. Hence (4.10) holds for a.a. w, all x € F,, and () as above.

(ii1) From this point on the details are essentially the same as for the

classical case [12, Theorem 2.1] (which also uses Gartner's result (4.10) for the

LI N - LT LI AR AL P 4
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‘classical’ case), and only an outline will be given. The interested reader
should refer to [12] to fill in the gaps. A main difference is that we must be
more careful about the uniformity of the estimates in x and w. The argument
can be divided into the following steps.
(a) From the definitions of ¥ and i, it can be shown [12, Lemma 3.1, p.
137] that
T
l"*w(E) = I L(¥(s), B(s),s)ds
0

where we define B(-) by the linear interpolation
B(s) = [(ia + & —s)B, + (s —i8)B,|1/4, for s €[ia, id + 4]

(b) Since [b(x,t) € K, the Xd"N(-) are Lipschitz continuous with constant

K. Since
inf L X,Bt) ==
|b|>K ( )

for all x, the paths in the sets

& (s) = (¢ S(T,) €5)
and
T
348 = {o: [ T, oo nae «5)
0
are also Lipschitz continuous with constant K.
These facts imply that given & > 0, there are 4, > 0 and &' > 0 such that
for A € 4, and all x (d and dx' resp., are the sup norm and Euclidean

distances)
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(dXUN, 388(5)) > 8) € (d,(X§2, 3¥()) > 8').

This and (4.10) imply that given h > 0 and 6 > 0 there is N, < @ such that for

N 3N, aa w x €F and ¢y as above we have
(4.11) P,-N(d(x*"-". o¥4(s)) > 8) € exp = (s - h)/ay .

(c) As a consequence of the ls.c. property (as a function of {(-), & )) of
[T L(¥s),8(5).5)ds, given h > 0, there is 6, > 0 such that if d(,¢) € 6, and x =
H0) € F, and SX(T,¢) 3 s, then J'g L(d’(s),(b(s),s)ds 3s—h[12, p 142)

(d) Since b(-,t) is continuous, uniformly in §, given h > 0 and 5, > 0 (as
in (c)) and 8, > 0, there is a 6 > 0 and 81' > 0 (and € &) such that ¢ € C [0.T).
d(é.4) € 8! implies that

(4.12) (d(XNx0) € 8) C (AX¥N9) ¢ 8,).

In [12), Freidlin uses a Lipschitz condition on b(-,t) to get the set inclusion
analogous to (4.12). But continuity is also sufficient.
(¢) We now combine the facts in (a) - (d). Let h > 0 be given and define

] 51', % as in part (d). Set 6 = min[sz,s,sl']/Z. Define the compact s¢t R(x)

20
= (¢ € C [0,T): ¢ is Lipschitz continuous with constant K}. Let {$. 1 € M) be
a 6-net of R(0). Then (@f =x+¢,i ¢M)isa 6-net of R(x). Choose 4 > 0
and §, such that the ¥, are constant on the intervals [ja, jo+4), j € T/A, and
s?p d(¢i,wi) 4 3/2. Define ¢r:‘ = x + ¢. For x ranging over F,. the ¢X(1),

t ¢ T take values in some compact set.

By t..e set inclusion in (4.12) and the definition of 6, we have

w o, N v LI ] = DAL .‘. "y .
‘J‘; alod ‘-_.\ s } e R INBARCERS Y T T L R e P e RS L e e
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(4.13) Py (d(X™, 8,(5)) > 8)

M
€ L Py (d(XN* ¢%) ¢ 8)I .
1 FN{ ( ' }{d(¢:‘. 3, ())>6)

- e e

M W(N
€I Py (dX'", ¢) €86,)1 .
1 Pl D8 {d(¢7 3, ())>8)
If d(¢,6x(s)) 3 0, then §X(T,¢) 3 s It follows from part (¢) that
I(d(ﬁ.gx(s)bg} =1 implies
N
(4.14) (X, %) € 8,)

T _ .
C {X@('NG [& J L0, H1),t)dt 3 s —h, &0) = x]]

0
9 Now, by part (b) there is N, < @ (not depending on x € F,) such that for
3 N 3 N, and aa. u,
4.15) P (d(Xwix'N@‘) €6} €exp —(s —2h)a
' Fn * 27 (a(67 8, (1))>6) N

X Combining (4.13) and (4.15) yields that there is N, < = (not depending on x €
F or on w (w.p.1)) such that
(4.16) Py (dXN, 8.(s)) > 8) € exp — (s — 3h)/a,,
Now suppose that we are given A C C,[0,T] satisfying &&gx(T,m 3 s, We
! claim that d(A,ax(s—h)) > 0. If not, there are ¢! € A, ¢? € 5x(s—h) such that
) d(¢!,¢?) -~ 0. Since sx(s—h) is compact, we can assume that ¢* ~ ¢ € 5x(s—h)
Then ¢! - ¢ implies that ¢ € A. By the lsc. of §I(T,-), we have §’(T,¢) ‘
)_ii_m §X(T,0?) € s — h, a contradiction. It follows that there is & > 0 such that

%onea_s_x(T,cb) ? s implies that d(x, 5‘(s—h)) > & for all such A. Together with

(4.16) (with s replaced by s — h there), this yields the existence of N < = (not

"-_' DR - ' o R P o LN . e . ‘v . - o TN . R L . . R
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-5.2-
sense that the resulting processes have the same measures) as F(x_,8..v,).
where F is continuous in x. Then, a proof very close to that of Thecorem 4.2 is
used. The details for a scalar case (for notational simplicity) where b,(x,8) = b(x)
arc given in Appendix 2. They are an adaptation of the proof of the vector case
large deviations upper bound given in [17] for the constant a, =€ casc. An

analogous adaptation for the general vector case yields Theorem 5.1.
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5.2. State Dependent Noise

We now prove the form of Theorem 4.2 for the state dependent noise case. In
order to provide a reasonably general proof, we generalize slightly the definition
of the state dependent {{:) or Markov {%,.1X,) processes. Let {x,) beasequence
of either random variables and/or constants and (¢,) a random sequence with the
following properties. x, isa function (perhaps deterministic) of (xj,t,j, j<n),and
P € 18 ,=8§x ,=X, $oop Xpop <) =PX&,.). Suchan {x_} sequence is said
to generate {{_). Most often x, =X or X:"‘ for some (to be stated where
necessary) initiai condition and starting time.

We use the following condition, where H(x,«) was defined in (2.2b). The
condition is satisfied in many problems of practical interest. An example

will be given at the end of the subsection.

A5.2. (i) (b(-,)} is iid. and |b(x,}) € K.
(ii) Given ¥ > 0, there is a & > 0 such that if {x,} generates {(%,} and Ix,~x| € &
for all i, then (E{ denotes the expectation given the initial condition §o= %)
N

(5.1 lim ;— log Eg exp <& T b(x;2)> € H(xa) + (ol + 1) = Ho(x,),
1

uniformly in ¥ € M and in x in any compact set.

Theorem 5.2. Under (A5.2) and (A2.1), (A2.3), (A2.5), condition (A2.6)
holds.

Proof. The proof will be set up so that it can be completed by an

argument of the type used in Sections (¢) and (e) of Theorem 4.2. The basic

q’.' -
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technique is adapted from [20], where a gencral treatment of the upper and

lower large deviations bounds are obtained for the constant a  =a > 0 case
Fix ¥ > 0, and let & be defined by (AS52). The proof of Theorem 41

adapted to condition (AS.2) vields: for any sequence (x ) gencrating {{; and

satisfying |x — x| € &, we have (uniform!y in ¢ and in x 1n any compacst sct

and in the sequence (x)}),

) — mit, +t+48)
(5.2 lAn_T N l;‘m ay log E[cxp m(‘i*‘) Cacabix 8 ay | {m":\"“ = g]
€ Hy(x.a,t),
where
i_~l7(x\ogt) = K‘l(t)HO(x,K(t)a) + <og-t;(x)‘> + YK MKty + 1.

analogously to the case in Section 4. Define l__7 to be the dual of ;{.,

By (5.2) and the theorem of Gartner referred to in Theorem 4.2 af {n}

generates (§)) and Ix, = x| €8, then for Borcl A,

. mit,+t+4) _
(5.3) liNm aylog P{ m(‘;:“) ab(x.t)€A] {"‘(‘N*‘) = {}S—Bi;; ol 7(\.6 A,
where the estimate is uniform on any compact (x. ) set. as well as in the
sequence (x|).

Henceforth & ) is some function in C [0.T] with Lipschitz constant € K
Recall the definition of (X:"‘, n ?» N) from (2.9). The sequence generating (L)
will be the x -arguments in b(x,,8) in the functions below It will usually be
(XI’:"‘, n » N}. Let & € 8/(y + K). Define Do) = &t + 8) - &t Then, ot

follows from (5.3) that (uniformly in each compact t. x. { sct)

e
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. m(tN+t+A)
(54) I’iqm aylog P{] T a'b‘(X‘N"‘,{i) - DAO(t)l £ 274 I ¢

m(ty+t) mtg+t) 2

X ety = HUI € 7A}

s - inf AL, ($(1).B A,
{8 |B-DA$(1)1 € 278y 7
By [20. Lemma 24]. (A5.21i) implies that for given B, we can find B'

such that |8 - B8'] € Y4 and
(5.5) Ligt).B' o) € [7(0((;,13 L)+ Y
By using this 1n (5.4) we can replace the right side by

(56 AL(&1).B A1) + 75 .

- inf{
(B 1B-DPo € sy

{Since 7y can be made as small as desired. the added yA will eventuaily be
dropped)
Fix T < = to bc an integral multiple of A& Then (uniformly in x, £ on

cach compact set) (54) and (5.6) yicld

(57 lim aglog P(AIXN2d) € 78 | Ly = L)
N
€ lim aglog PUXNXia) - @is) € ya 1 € Toa |ty = 8)
N

.81
« I hm alogPDAXMX(ia) - @ia) € 298 |
I A

'XN.I(IAI - «lA)I ¢ YA tm(tN4lA))

T .41 _
s -4 Ligr1a).B a8y + YT

nf
(8 18-0%n4) § 378

" “» ‘-"\"-f“..’\- ‘._-,.'._
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Let 85(1) = &i8) for t € [i4, iA + &), and define AJ(d) = (¢ € C [0.T] ¥t is
constant for t € 14, 18 + A), and IJ:(iA) -~ DAd>(iA);’A| € 37,1 ¢ T/a). Then the

rhs. of (5.7) may be replaced by

T —— .
(5.8) - inf I UOA(K). Yt),Hde + YT
L vealie) o
b
. Since S-X(T‘o) < = implies that ¢ satisfies a Lipschitz condition that is

independent of x, there is & > 0 (independent of ¢ and x) such that for ¢

satistving gx(T.m < ® we have

sup_ 18500 =~ &) < .

) (5()) o¢t 8
: sup sup j¥(t) — &) € 49T.
veaf(®) oseeT

Using the result of part (¢) of Theorem 4.2 we can now complete the
estimatc just as we did in part (¢) of that theorem. Let s > 0 and h > 0 be

given. By picking ¥ small (which implies 4 > 0 is small) we have that x € F,

* §,‘(T.®) ? s implies

! T —— . -

‘ (5.10) - inf I (1), it),t)de € — 5 (T,4) + h.
2 veald) Yo

Let ¥ > O now be fixed, and set & = min[6,aY]/2. Define R(x) and
choosc the 6-net of R(x) whose cardinality is independent of x € F as in

part (¢) of the proof of Theorem 4.2 Then using (5.7) through (5.10), for

¥ s a8 g

large enough N (and independent of ¢ and x) we have

€ s o @ & 3 R &
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PrdtxN = @, (s) > 8)

d‘P d(XN* ) ¢ ya)l -
. ; g(d( *) € y8) (@0 B )>8)

3 f (exp(—S_(T.¢%) + 2h + JauNl -
1 ! DN {d(97.,()>6)

¢ Mexp(—s + 2h + 7T)/ay.

(A2.6) follows from this estimate in the same way it followed from (4.16) in

Theorem 4.2 O
: Example. We present one example of the processes that may be handled :

by thc methods of this subsection. The example includes the adaptive routing
process mentioned in the introduction. For additional examples, the reader )
may refer to [20])

The basic method for proving that an assumption such as (AS5.2ii) hclds is
to first show (2.2b), and to then use (assuming it exists) the continuity
properties of the measure induced by b,(x,{) as a function of x, which must
be uniform when conditioned on i Conditions under which (2.2b) holds are
given in Example 4 of Section 2. For more details or. that and other '
examples, the reader is referred to [24).

We next state the assumptions of the example, then discuss them, and then

prove (AS5.2ii). Assume (i) - (iii) below.

(i) There are functions a(x), p(x,k) » 0, 1 € i € N, with ai(x) continuous in x

and p(x,t) continuous in x. uniformly in . Furthermore L p(x,8) = | and "
i S

each p, is either identically zero or bounded from below by some ¢ > 0. Let ")
3

"

"~ - h]
‘-', -_\

"‘J\'- ..' \' "- \.».‘..\..‘-' "‘ .".3‘,‘ O “. P .,‘_ ” 'I:J" "J‘ J e v, N '- ‘
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P(by(x,t) € A | x,8) = § P, Ve, yea)
1 1

be the measure of the random field b (x,§).

(i1) The process ({:‘) takes values 1, ..., M, where M does not depend on x. Let
Pi"‘i and P;‘:;‘ denote the | and n-step transition probabilities of {§}).

(iii) There is n, (not depending on x) such that P:.no is continuous in x and

strictly positive in X, i, j.

The third assumption implies that there is a uniform (in x) lower bound
on the geometric rate at which the measures induced by &Y converge to the

invariant measure.

Discussion. In many applications, the distribution of the random field
b (x,{) is concentrated on a finite number of points which move continuously
with x, and which do not depend on {. Then we let these points be the a(x), i
€ N, and then pi(x,§) = P(b (x,{) = a,(x) | x,t}. In the above cited ‘routing
example’ b might take values on 1 (if b_ is an ‘indicator’ function) or values
a,(x), a,(x), if it is of the form a,(x)I; + a,(x)I,, where the Ij are indicators of
events which depend on the arrivals, departures, routing realizations, etc., but
whose distributions depend on the current values of x, t{. Both forms have

been used in the literature.

Proof of (AS5.2ii). By (ii), (iii) above, (2.2b) holds [24]. In order to
simplify the notation, we set n, = 1. The general proof is very similar. Let F

be a fixed compact set. Let ¢ > 0 also be a lower bound for P;‘j, x € F.

\‘_--'.-., IO NIRRT RTINS . e S P M L VL L MR I R W
. . + VA . AT Ll Nl - (
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S
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Given 7 > 0, choose & > 0 such that |x — y| € & implies that la,(x) —a(y) €7,
py.8) € p(x.k)exp 7 for all { and P"J ¢ P:‘chp y for all i, j, and x € F.

For fixed x, let {x} satisfy the hypothesis of (AS5.2ii). The transition

Xn

probability used to get the {_ in b _(x .8 ) will be P Thus (x;} (or

{n-lJ
whatever sequence replaces it below) generates ({n). Then for ¢ = oo

Egexpa £ b(x 1)
1

.\
-
[

-1
= Ev:xp(ou 21 b‘(xl.ti)>E§[cxp<a,bn(xn,£n)> | LS.

Egfexp<a T b o £ ¥ exp< > (x_ k)P
g|expie L obxd, Lk P o (x ) 2p;(x k) Eoi)’
Now, for all x_, . the last bracketed term is bounded above by
(**) E g exp(oga.(x)>pA(x,k)P’i exp(iod + 2)7.
j=1 k=1 ! ! n-1,k

Using (**) in (*) and continuing to iterate backwards to approximate all the X,

by x plus an ‘error’ yields the upper bound to (*) of
Ezcxp [(og § b(x,§)> + n(lof + 2)7].
1

(AS5.2ii) follows from this and the convergence in (2.2b).

b e e 8 N

- m s e
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5.3. The Constrained Algorithm

We¢ now outline the extension of Theorems 3.1 and 4.2 for the algorithm
(1.2), where G is a convex set which is the closure of its interior and its
boundary consists of a finite number of smooth (C?) sections. References

(18], [19] contain a detailed discussion of large deviations bounds (upper and

11

lower) for constrained algorithms, under constant gains a, a > 0
(Reference [18) is an abbreviated form of [19].) The technique used there is an
adaptation of the method of Freidlin [12] for the unconstrained case. In
order to simplify the development, we will use the assumptions of [18], [19],

and discuss the main questions concerning the adaptation of the proof there

to the present case. First, we define the mean projected dynamics for

X, ., = Ng(X, + b(X_.2)).

n+1

The processes (X’:"‘), (X"{"N) and the various linear interpolations are all
defined as they were in (2.10), (2.11), (4.7) and (4.8). All neighborhoods and
sets used below are relative to G.

For x € G and v € R', define the ‘projection’ of v at x
nG(x,v) = lAl_rpo [Ag(x + av) — x)/A
Definc the set of outer normals to 3G at x:
n(x) = (y: forall y € G, <7, x=y> 30, M= 1{).

Note that [26, Lemma 4.6] N (x,v) cquals v if x € GO (the interior of G) or x €

oG and sup.,en(x)('y,v) < 0 (l.e, where v points inward). In general, it equals

oy AL N LR AR LI e » UL I BN E R LI A - -,
. \'}\ 3,._, _5_.1_,;‘ .5, B SO R R \'.s'-."f_.:_ A Ay -&r',,\ AR TOIARA AT R S A
X " Sl lA » -

i R g
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l
& v = v,y*>7* if X € 3G, sUpPye, ) <%.v> ? 0 and 7* is the (a) maximizer.
[ Decfine ﬁ(x,a.,t) and l_,(x,B,t) by (2.7) and define the ‘constrained’
~_' L-functional by
]
L x,B,t) = inf L ,V, 1)
G( ) v:ﬂé(x,v):B (xv.t)
)
AN _ _
b For x £ G or if the infimizing set is empty, set Lo(x,B,t) = += Then L;(x,8,1)
' = L(x,8,t) if x € G% or if x € 8G and <7,8> < 0 for all ¥ € n(x) (i.e, B points
., to the interior of G). If x € 3G and there is ¥ € n(x) such that <y,B> > 0 (B
. points ‘out’ of G), then iG(x,B,t) = ® The interesting case is when
sup <7,8> = 0; i.e., B points ‘along the boundary." In this case, there is a
Y€n{x)
- true (nontrivial) minimization. Since L(x,B,t) is lLs.c. in B and L(x,B,t) ~ « as
': B = @ (under the assumptions to be used), the infima is attained. Define
N . T .
SeT) = | Letets), 00910,
L] 0
) and the ODE for the projected mean dynamics
(5.11) X = Mg(x,b(x)),
A where E(.) is defined as in (A2.2).
Ly
iy One of the main difficulties as well as points of interest for the
) constrained algorithm is that in many applications the escape of (X ) from a
b, neighborhood of a stable point of (5.11) will be essentially along the
b,
e) boundary, and when such neighborhoods are entered from the outside it is
; often essentially along the boundary as well.
! We will use the assumption
o
2
o

A)
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-“'»J\": _‘r‘_.r_‘.r




N 4% 44 Q% 2 'B% 492 3% 4’2 §'a B¢ "4 8% 402 @'a &Y a gt . < e . &
] ) - W Wy gt b vy O XYy ¥ . R (S s he™ 0a* it ia-opa - a) |

-~

LN,

o

’I

<,

¥ -5.12-

)

A5.3. (1) The noise {{ } is exogenous.

"

)

: (i1) b(x,t) is bounded (by K) and is Lipschitz continuous in x, uni formiy in §.

A

q

(1i1) Partition b(x,E) into two parts, of dimension s and 1 — =, resp. Define

\ . N

:: i - N Z?l'"(x) I3,Mx)

ko = cov & [b(x.by,) = bX)] = INO(x) = | ,

N n =1 Z;‘l'“(x) 2;‘.‘;“()()

N

. Then either (a) (the non-degenerate case) limy INNX) > 0 (n the sense of
N .

"

- positive definite matrices) or (the degenerate case)

(b) lim INP(x) = lim IFP(x) = lim IN"(x) = 0 and Lim E);"(x) > 0.

2 N.n N,n N,n Nn

K
Remark. AS5.3(iii) is not particularly restrictive in applications, since
W many algorithms divide naturally into components which are not directly
™, affected by noise and those which are in a ‘non-degenerate’ manner. It and
N
_h: AS5.3(ii) were used in [18,19) to prove the lsc. of S; (T,4), the action
" ¥

0 ) .
‘J. functional for the constant gain a_ =a > 0 case (19, Theorem 2]. In [18,19],
: we required the set U(x) = {B: L(x,8) < =} (or its analog in the degenerate
S case AS5.3(iiib)) to be continuous in the Hausdor{f{ topology, but, in fact, this
> follows from AS5.3(ii). The analog of this ‘Hausdorff continuity' condition
! for our case will always hold by AS5.3(ii) wherever it is needed to adapting the
LY

e proofs in [18,19] to our a_ ~ 0 case.

"

heorem . Let (5.8) have a unique solution for each initial condition in G.

T

» Let © be an asymptotically stable point of (5.8) with domain of attraction A C G, and
'

W let (X} enter (infinitely often w.p.1) a compact set D(8) C A Assume (A2.1).

(A2.3),(A25),(A2.7)and (A5.3). ThenX —=8w.p.l

y LY
\‘\.l.v.i.\l

*
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If we assume in addition that given € > 0 there is N < = such tha
a,/ay <1 + € forall i 3 N 3 N , then
(5.12) @aNlog P(X, € D(8), some n » N|[[Xy 6| ¢§)
g - inf S L9 .
G.6(0f b
¢ d(0) - 8] €8
®(t) € D(8) for some t<=®
Remark. Rate of convergence results for the constrained algorithms are not

available wvia the <classical stochastic approximation method of ‘local

linearization'. This makes estimates of the form (5.12) particularly important.

Remarks on the Proof. The argument ciosely follows the lines of the

argument of Sections 3 and 4. In [19, Theorem 2], for the ‘constant gain’
case, ths lLs.c. of §c; x(T,@) was proved. Purely notational changes in the proof
there gives the ls.c. in ¢ of §G ¢(0)(T,d>). Since ns(x,v) = B implies [v| 3 {Bi. the

compactness of (for compact F)

Y (655 (T.0) €5)

is proved as it was in Lemma 3.1(ii). Note also that S (T.6) = 0 iff
Ec(as),é(s),s) = 0 ass. By the definition of Ec; and the fact that E(x.B.s) =0
iff 8 = b(x), Lg(x,85) = 0 iff B = mg(x,b(x)). Therefore Sg (T.6) = 0 iff &s)
= nc(¢(s),€(¢(s)) a.s. These remarks give us the ‘constrained case' analog of
Lemma 3.1. Then, if (A2.6) held, with §GJ replacing §l. we would have our
convergence theorem.

Under the smoothness condition in (AS5.3ii), the proof in [18,19] can be
adapted to get the necessary form of (A2.6), in much the same way that

Freidlin’s proof in [12] was adapted to get the proof of Theorem 4.2
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6 APPENDIX | ONTHEDIFFERENTIABILITY OF H(x,a)ata=01n (AT 3)

N When the state process (N ) s Markos. or when ot s one o omponone

¢f a Marhov process fsuch as our “state-dependent noise’ proJens ’-\:-{,

satistying <certain ‘umiformly recurrent’ conditions. 1t as pess:bic 10 prose

L4
the differentiatihity of  Hixied for a wide class of such proceste by
: using analvtical techniques and the characterization of  Hiva ac the 1y
¢f the eigenvalue of largest modulus of an c¢perater acervated 100 the
‘a procese vas an 240 Sce [24] for derails on o hew this oapproach oros bl
" in a gencral setting Howeser. for many of the prodesses ariang 0 the
y, study of stachastic systems the assumptions regquired by thie approah 3
3 not halyg As a very common example. one may cons:der the ARMA
.: made! to be discussed below
In this section. we outline a method far proving the ditfercnuat: i
. of Hiv.ar at a = 0 that 1s based on well known ‘level 27 and “level ¥
. large deviations results and which s general encugh ta cover man. o the
. non-Markoy processes encountered in recursive algorithms
Inapplications. we would not wantto be concerned with the abstract jeve! oof
resulte an this section But. they make 1t clear that the a-differentiat it
- assumption 15 not restrictive and can be treated 1in many different wave We
work onls with the exogenous noise case and stationary and continyous
i determuimistic random fields for simphicity of exposition Defline the sampic
2 nciupation measure (aver the Borel sets Ty
.
A I
3 L_‘rf.w = ‘\— ? l’:b“l {‘v€T
L
..
-

.

".’-"':"."'.-"(“f"’;".'f

~ N
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and the <paoc ® otopr o bar ity meacures on RY oendowed with the v 0 g o
WCLk T CTRETC The Lo o« are yn M Assume the toilowaine larg:

deviatione estimate ta e fixed throughout:

AR There oG b0 e galove funclionai l. on Mo m TR gne b €

Ml or € e vompacs for s < ® gnd for Borgl A I Rand cach ootwp ]

— )
im \—l-»g Pr il, € A; € - nf l.(“‘
N : -
vE€A
Soetroceert oondeeoone fer sAan o are contaaned an omans poace 10 TR
A ume
At Trove L Wil Metiete \_x € M ik TRy Il‘\—l\ = (

Itroilews rrom v AR and (A6 2 that Lo v converges (w p 1ot \—lr

We new show that (A6 1) and (A6 ) imply the desired a-differentiabyhiny
Then an exampie will be given, and the approach discussed

B. Varadhan's theorem on the asymptotic evaluation of integrals [2]]and the

houndedness and continuity of bix, ). the following inequality holds (w.p .

U ) ,/ ( ; < y —
61 le N log E}—ch; a ?b(x.ij) 4 SED [J' ay A(dy) l‘(\»]

H*%x.a)

Qbvious!y Hix et € H®*x.a) Since both functions are convex and H(x.0) =

H® x.0) = 0. Hix.a)1s a-differentiable at a = 0 1f H*(x.a) is

e e e s L e S N ey e e e eyt L - . . L S A SRR
I P R S R R A BN N N AN AN, A R N I A N R P N R N A S AN PO,
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Next note that

(62 H*(x.a) = sup sup [J‘&’a,_\' w(dy) - lxm]
B (v& [yviay)=B)

= sgp[(a_5> - L*x,B8)).

where
L*x.B) = inf lx(\).
(veM [yviay)=B)
Since H%v.00 = ¢, B* 15 a subdifferential of H*(x.a) at a = 0 af
(6.3) H* x.a — <aB*” 3 0. all «

But (63} holds 1ff L*x.B* = 0 since H* js the Legendre transform of L*
Stnce H*%x. ) is convex, it is differentiable at a = 0 iff the sct of
subdifferentials at a = 0 contains only onc element. By (A6.2). 8* = f}\—‘td_\)
i1s the unique value of B for which L*x.8) = 0. Thus B* = Iy\_x(d_\) 15 the
unique subdifferential. and the a-differentiability is proved. Note that B* =
bix). as defined in (A2.2).

1 ion. We have phrased our requirement in terms of H(x.a) at «

]

0, but as shown above this is obviously equivalent to the umiquencss of the B*®
satisfyving L(x,B*) = 0. The reason for our choice is that in most of the work
on large deviations for dynamical systems [}2], as well as the work
generalizing Cramer’s original paper [i6], (24], [25]. the differentiability of
H(x,a) in a is taken as a fundamental assumption. As a consequence, this was
the condition that was typically verified for a given noise process Sce for

example Lemma 34 of [24]

7’
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We illustrate the method with an example.

Examplc Suppose that b(x,-) is continuous, and that ({_} is a stationary

ARMA process with representation

(6.4 Aocn * Alcn—l oot Adl(n-dl = BOwn + Blwn-l + dewmdz‘

where (¢} 15 a sequence of zero mean, bounded, i.i.d. random variables. For

simplicity, we¢ assume both §, and d’x take values in R™ It is also assumcd that

d ) . .
the roots of detitAg+ As+ -+ Ays Ly lie outside of the ¢losed unit disc.
1

Define S = (RT)® (the space of infinite sequences with values in R7). and

considcr the mapping F-' S = S defined by (F( )J denotes the jth component)

Fi{s,)), = bx.p))

)
J
where {s} and (p ) are related by

A p -+Adlpn_dl-Bs+-v-+Bds

0"n zn-d'

n 2

We can metrize S in such a way that F is continuous (and in fact unitormly
continuous on a subsct A C § such that (w|) C A wpl) Itis then relatively
straightforward to show that (A6.1) and (A6.2) follow from the (so-called
‘level 3°) large deviations results for the process (&) that are given in (23]
under a suitable application of the ‘contraction principle’ {(a ‘continuous
mapping’ technique) [21; Section 2]. We omat all details here, since they would
take us too far afield. and the techniques are known in large deviations

theory

Faa™
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In gencral, if a given process {{} can be represented ac a vontinu
transformation of a simpler process {¢) for which the appropriate ficv e v
results exist, then we may obtain (A6]) and (A62) via the ‘Contra tien
principic’. In the course of doing so, we alse verafy AZ 1 wiah H v
therc replaced by H'(x.a) of (6.1

Although this approach may seem abstract. it an fact rather casily vicld:

the a-differcntiability for a wide variety of the noise processes of antere? an

stochastic syvstems thecory, which often o have such a reprecentaton




APPENDIX 2 PROOF OF THHEOREM 51 FOR b(x%) = b(x)
SCAL AR CASE

Wo o adapt the proot an [17) for the constant a = a » 0 Jasc The
deta ar the full Theorem ST use a similar adaptation Detine G oay =
Pt a;. and (-nl [(v1] = R by (i"‘\y = supfa G rar &y Let v
and e te mutualhy independent sequences of random sariables, cach 11 d.

umitormly distributed on {01, and the (< Gaussian with mean
“artance 0 , 1 denote the denwite of ¢ oand Go o

dastributen functen of [hen

4 (i, fay = [p,ra - hdGorhy
Jda * J x
tcunttormly pesitinve on each bounded (xa) set

Detine ('olx' ias (i;" y was but using (ic‘lt ) Ler Byodenote o compaat
set It tallowe from the weak continuity in (AS 1) that (ié’xf\l IS continueus 1n
(x.vo € R » (01 and that given & € (0.1 2), G'(fo(\; 15 uniformiy continuous
an b oo (a0 1 - 4] Dcfine F (x) = G;’(\n). Fou Iy Now,
analogous to what was done in Section 4, for x € R" and n 3 N detine the

auxihiary processes 1n (7 1) (here also ¢ ) 15 piecewisce constant on [T} with

interyvals of constancy [14 14 + A) and we writc w:" W - on 3Ny

(T la) XNx o xNxy g F (xNxy, XN x
n n n n N

n+1

v N wN. N,
XX = Xn“+ anFn(Xn") +ap.

n+1l

s N x s N.x
'\O.nol - xO,rl + anlL

N .x
c'n()\n ',

UN UN N
XOr XY v, Fo (4.
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Owing to thc way that G;’ was constructed, the distributions of the
process defined by (7.1a) are equal to those of the (X:"‘, n 3 N} process
defined in (2.9). (In fact, the discussion above indicates how the random
ficlds b(x) could be constructed.)

By the definitions of G;'( ) and Gb‘lx( -}, the distributions of {i:", n 3 N)
and {.\'g::, n » N} are the same, and we will work with the latter. Notc that
the {p } no longer appears in (Xgi. n 3 N). For 8 > 0 and large N,

- n
(7.2 PL sup )XS"‘ - X:'"‘l 3 6}= 2PL sup Lap 2 8}
A'SnSm(znVI‘) N¢n€<m(t +T) N
€ exp — 8/2a, K To,

where K| is an upper bound for sup a /ay for large N.
N‘n‘m(lN+T)

The equivalence (in distribution) of the processes defined by (7.1t and
(7.1cy and (7.2} essentially allows us to prove the theorem by using a large
deviations upper bound for (7.ic) -- which is ‘smoothed’, since Gb'lx(v) is
x-continuous. A large deviations upper bound of the type obtained in Section
4 can readily be obtained for (7.1¢), via the intermediary process (7.1d) (as in
Section 4) Henceforth x is confined to a compact set F.

Next, let XN, Xg"‘(') and Xg'NL) denote the piecewise linear
interpolations as in (2.11), but for the processes defined by (7.1a,¢c,d). Recall
part (d) of Theorem 42 The following set inclusion (4.12) was the key part

of the proof

(412 (dXN=0) € 8) c (dX¥N.0) ¢ 5,
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R

Here, we work with the set inclusion (7.3) instead (see below for proof) for

appropriate & and B,
(1.3)  (d(XNX¢) € 8) c (d(XYN.9) € 5) UN,

where P(N} € exp -~ Mj/ay with Mo - » a5 0 0 and not depending on ¢ or x.
(For the general }-dependent b, we use the conditional probability, as in
Theorem 4.2, and all upper bounds are uniform in w w.p.1.)

Define
\ H(x,x1) = H(x,t) + K(1)a?0?/2

> and the associated L and Sx functionals Eo and §O,x' Owing to the added [
in (7.1b), }-“]o is the proper H-functional for i""‘(-) and for X’;"‘(-). It is
enough to work with the inclusion (7.3) instead of (4.12) as in Theorem 4.2,
owing to the inequality (7.2) and the equivalence (in distribution) of the
processes iN"‘(-) and Xg"‘(-). Now, the same arguments that werc used in
Theorem 4.2 now imply Assumption (A2.6), but with 5‘ replaced by §0,x' By
[17, Lemma 1],

lim inf S, (T.8) » inf S (T,9).

00 $€A $eA
The last two sentences yield the theorem. Thus, only the set inclusion (7.3)
needs to be shown. This inclusion is proved in exactly the same way as (2.6)
in [17] is proved, with a; or ay replacing ¢, XY= replacing X§, and Xg'N

replacing Xf.,"", and we omit the details. 8]
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